Topic 4-
Inverse of a matrix

With numbers we have multiplicative inverses. For example, $3 \cdot \frac{1}{3}=1$.
We write $3^{-1}=\frac{1}{3}$.
$\frac{1}{3}$ is the multiplicative inverse for 3 .
What about for matrices?
Def: Let A be an $n \times n$ matrix.
$\left[S_{0}, A\right.$ is a square matrix].
We say that A is invertible if there exists an $n \times n$ matrix B where $A B=B A=I_{n}$
If $A B=B A=$ In, we say that A and B are inverses of each other.

Ex: Let

$$
A=\left(\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right) \text { and } B=\left(\begin{array}{cc}
-1 & 1 \\
2 & -1
\end{array}\right)
$$

Let's check if A and B are inverses or not.

$$
\begin{aligned}
& A B=\underbrace{=\left(\begin{array}{ccc}
\left(\begin{array}{ll}
1 & 1
\end{array}\right) \cdot\binom{-1}{2} & \left(\begin{array}{ll}
1 & 1
\end{array}\right) \cdot\binom{1}{-1} \\
\left(\begin{array}{ll}
2 & 1
\end{array}\right) \cdot\binom{-1}{2} & \left(\begin{array}{ll}
2 & 1
\end{array}\right) \cdot\binom{1}{-1}
\end{array}\right)}_{\underbrace{\left(\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right)}_{\text {answer }=2 \times 2} \underbrace{\left(\begin{array}{cc}
-1 & 1 \\
2 & -1
\end{array}\right)}_{v 2 \times 2}} \\
& =\left(\begin{array}{cc}
-1+2 & 1 \\
-1 \\
-2+2 & 2-1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)=I_{2}
\end{aligned}
$$

Also,

$$
\begin{aligned}
& B A=\underbrace{\left.\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right)}_{\underbrace{2 \times 2}_{\text {answer is }} \begin{array}{c}
\left(\begin{array}{cc}
-1 & 1 \\
2 & -1
\end{array}\right) \\
\underbrace{2 \times 2} \\
2
\end{array}} \\
& =\left(\begin{array}{ll}
\left(\begin{array}{ll}
-1 & 1
\end{array}\right) \cdot\binom{1}{2} & \left(\begin{array}{ll}
-1 & 1
\end{array}\right) \cdot\binom{1}{1} \\
\left(\begin{array}{ll}
2 & -1
\end{array}\right) \cdot\binom{1}{2} & \left(\begin{array}{ll}
2 & -1
\end{array}\right) \cdot\binom{1}{1}
\end{array}\right) \\
& =\left(\begin{array}{cc}
-1+2 & -1+1 \\
2-2 & 2-1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& =I_{2}
\end{aligned}
$$

Since $A B=B A=I_{2}$
we know A and B are inverses of each other.

Theorem: Suppose that A is an $n \times n$ matrix that is invertible, ie an inverse for A exists.
Then there exists only one $n \times n$ matrix B that is the inverse of A, ie where

$$
A B=B A=I_{n} \text {. }
$$

Notation: If A is invertible, then we denote its unique inverse by A^{-1}.

Ex: $A=\left(\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right)$
We saw in the previous example that $A^{-1}=\left(\begin{array}{cc}-1 & 1 \\ 2 & -1\end{array}\right)$

How to find A^{-1} for a square matrix A if it exists
Let A be an $n \times n$ matrix.
(1) A^{-1} exists if and only if one can row reduce A down to I_{n}.
(2) Procedure: Start with the matrix $\left(A \mid I_{n}\right)$
Do row reduction on the above matrix until the lett side is either I_{n} or has a row of zeros.
If you end up with a row zeros on the left side, A^{-1} does not exist.
If you end up with I_{n} on the left side then A^{-1} exists and its the matrix on the right side.

Ex: Find A^{-1}, if it exists, when $A=\left(\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right) \cdot 4-2 \times 2$

$$
\left(A \mid I_{2}\right)=\left(\begin{array}{ll|ll}
1 & 1 & 1 & 0 \\
2 & 1 & 0 & 1
\end{array}\right)
$$

Goal: row reduce until left side is in reduced row echelon form

$$
\begin{aligned}
& \left(\begin{array}{ll|ll}
1 & 1 & 1 & 0 \\
2 & 1 & 0 & 1
\end{array}\right) \xrightarrow{-2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{cc|cc}
1 & 1 & 1 & 0 \\
0 & -1 & -2 & 1
\end{array}\right) \\
& \xrightarrow{-R_{2} \rightarrow R_{2}}\left(\begin{array}{ll|cc}
1 & 1 & 1 & 0 \\
0 & 1 & 2 & -1
\end{array}\right)
\end{aligned}
$$

row echelon form
but not reduced row echelon form

$$
\xrightarrow{-R_{2}+R_{1} \rightarrow R_{1}}(\underbrace{1}_{I_{2}} \begin{array}{ll|l}
1 & 0 & -1 \\
0 & 1 & 1 \\
2 & -1
\end{array})=(R \mid B)
$$

So, A^{-1} exists and $A^{-1}=\left(\begin{array}{cc}-1 & 1 \\ 2 & -1\end{array}\right)$

Ex: Find A^{-1} if it exists
When

$$
A=\left(\begin{array}{ccc}
3 & 0 & 3 \\
1 & 1 & 2 \\
-2 & 3 & 0
\end{array}\right) \leftarrow 3 \times 3
$$

$(\underbrace{\left(\begin{array}{ccc}3 & 0 & 3 \\ 1 & 1 & 2 \\ -2 & 3 & 0\end{array}\right.}_{A} \underbrace{\begin{array}{llll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}}_{I_{3}})$
Goal: Row reduce left side until either there is a cow of zeros or I_{3} is there

$$
\begin{aligned}
& \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{ccc|ccc}
1 & 1 & 2 & 0 & 1 & 0 \\
3 & 0 & 3 & 1 & 0 & 0 \\
-2 & 3 & 0 & 0 & 0 & 1
\end{array}\right) \xrightarrow{\text { put }} \begin{array}{c}
\text { zeros } \\
\text { here }
\end{array} \\
& \xrightarrow[2 R_{1}+R_{3} \rightarrow R_{3}]{-3 R_{1}+R_{2}+R_{2}}\left(\begin{array}{ccc|ccc}
1 & 1 & 2 & 0 & 1 & 0 \\
0 & -3 & -3 & 1 & -3 & 0 \\
0 & 5 & 4 & 0 & 2 & 1
\end{array}\right)
\end{aligned}
$$

make this a 1

$$
\begin{aligned}
& \text { make this a } 1
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow[-R_{3}+R_{2} \rightarrow R_{2}]{-R_{3}+R_{1} \rightarrow R_{1}}\left(\begin{array}{lll|ccc}
1 & 0 & 0 & 2 & -3 & 1 \\
0 & 1 & 0 & 4 / 3 & -2 & 1 \\
0 & 0 & 1 & \underbrace{5 / 3}_{I_{3}} & 3 & -1
\end{array}\right)
\end{aligned}
$$

Since we were able to reduce the left side into I_{3}, the right side is A^{-1}.
So, $A^{-1}=\left(\begin{array}{ccc}2 & -3 & 1 \\ 4 / 3 & -2 & 1 \\ -5 / 3 & 3 & -1\end{array}\right)$.

Ex: Find A^{-1} if it exists
when $A=\left(\begin{array}{cc}1 & 5 \\ -2 & -10\end{array}\right)$

$$
\begin{aligned}
& (\underbrace{\left(\begin{array}{cc}
1 \sqrt{5} & -10 \\
\left\lvert\, \begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right. \\
\underbrace{}_{I_{2}}
\end{array}\right) ~}_{A} \\
& \xrightarrow{2 R_{1}+R_{2} \rightarrow R_{2}}(\underbrace{\left.\begin{array}{ll|ll}
1 & 5 & 1 & 0 \\
0 & 0 & 2 & 1
\end{array}\right)}_{\text {row of zeros }}
\end{aligned}
$$

So, A^{-1} does not exist for $A=\left(\begin{array}{cc}1 & 5 \\ -2 & -10\end{array}\right)$.

Hw 4-Part 1
(3) (b) Find A^{-1} if it exists When $A=\left(\begin{array}{ccc}-1 & 3 & -4 \\ 2 & 4 & 1 \\ -4 & 2 & -9\end{array}\right)$

$$
\begin{aligned}
& \left(\begin{array}{ccc|ccc}
-1 & 3 & -4 & 1 & 0 & 0 \\
2 & 4 & 1 & 0 & 1 & 0 \\
-4 & 2 & -9 & 0 & 0 & 1
\end{array}\right) \\
& \xrightarrow{-R_{1} \rightarrow R_{1}}\left(\begin{array}{ccc|ccc}
1 & \sqrt{2} & 4 & -1 & 0 & 0 \\
2 & 4 & 1 & 0 & 1 & 0 \\
-4 & 2 & -9 & 0 & 0 & 1
\end{array}\right) \\
& \xrightarrow[4 R_{1}+R_{3} \rightarrow R_{3}]{-2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|ccc}
1 & -3 & 4 & -1 & 0 & 0 \\
0 & 10 & -7 & 2 & 1 & 0 \\
0 & -10 & 7 & -4 & 0 & 1
\end{array}\right) \\
& \xrightarrow{1 / 10 R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|ccc}
1 & -3 & 4 & -1 & 0 & 0 \\
0 & 1 & -7 / 10 & 1 / 5 & 1 / 10 & 0 \\
0 & -10 & 7 & -4 & 0 & 1
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\underbrace{\left(\begin{array}{cc|ccc}
1 & -3 & 4 & -1 & 0 \\
0 & 0 \\
0 & 1 & -7 / 10 & 1 / 5 & 1 / 10 \\
0 & -10 & 7 & -4 & 0 \\
\hline
\end{array}\right)}_{\text {Make into zeros }} \\
& \xrightarrow[10 R_{2}+R_{3} \rightarrow R_{3}]{3 R_{2}+R_{1} \rightarrow R_{1}}(\underbrace{}_{\substack{\text { row } \\
\text { zeros }}}\left(\begin{array}{ccccc}
1 & 0 & 19 / 10 \\
0 & 1 & -7 / 10 & -2 / 5 & 3 / 10 \\
1 / 5 & 1 / 10 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right)
\end{aligned}
$$

Thus, A^{-1} does not exist When $A=\left(\begin{array}{ccc}-1 & 3 & -4 \\ 2 & 4 & 1 \\ -4 & 2 & -9\end{array}\right)$.

Theorem: Let A and B be $n \times n$ matrices that are both invertible [That is, A^{-1} and B^{-1} both exist.]
(1) Then, $A B$ is invertible] and $(A B)^{-1}=B^{-1} A^{-1}$
(2) Also, A^{\top} is invertible and $\left(A^{\top}\right)^{-1}=\left(A^{-1}\right)^{\top}$

Note: $(A B)^{-1} \neq A^{-1} B^{-1}$
you have to flip the order because sometimes

$$
B^{-1} A^{-1} \neq A^{-1} B^{-1}
$$

There's another way to represent a system of linear equations.

Given the system

$$
\left.\begin{array}{c}
\text { iven the system } \\
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{n}
\end{array}\right]
$$

$$
\begin{aligned}
& \text { Let } \\
& A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right), \vec{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right), \vec{b}=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right)
\end{aligned}
$$

Let

The system (*) can be represented by the matrix equation

$$
\vec{A} \vec{x}=\vec{b}
$$

matrix multiplication

Ex: Consider the system

$$
\begin{array}{r}
x+2 y=3 \\
4 x+5 y=6
\end{array}
$$

Let's make the matrix equation that represents the system.

$$
A=\left(\begin{array}{ll}
1 & 2 \\
4 & 5
\end{array}\right), \vec{x}=\binom{x}{y}, \vec{b}=\binom{3}{6}
$$

Let

Let's look at $A \vec{x}=\vec{b}$.

$$
\underbrace{2 \times 1}_{\underbrace{2 x^{2}}_{\text {answer is }} \underbrace{\left(\begin{array}{ll}
1 & 2 \\
4 & 5
\end{array}\right)}_{\text {et's look a xt }} \underbrace{\binom{x}{y}}_{2 x 1}=\binom{3}{6} \leftrightarrow A \vec{x}=\vec{b}}
$$

This becomes

$$
\underbrace{\binom{\left(\begin{array}{ll}
1 & 2
\end{array}\right) \cdot\binom{x}{y}}{\left(\begin{array}{ll}
x
\end{array}\right) \cdot\binom{x}{y}}}_{2 \times 1}=\binom{3}{6}
$$

This becomes

$$
\binom{x+2 y}{4 x+5 y}=\binom{3}{6}+A \vec{x}=\vec{b}
$$

This is the same as

$$
\begin{array}{r}
x+2 y=3 \\
4 x+5 y=6
\end{array}
$$

Ex: Consider the system

$$
\begin{array}{r}
x+4 y-2 w+z=1 \\
2 x+w=3 \\
14 y-12 w+7 z=0
\end{array}
$$

Let

$$
\begin{aligned}
& \text { Let } \\
& A=\left(\begin{array}{cccc}
1 & 4 & -2 & 1 \\
2 & 0 & 1 & 0 \\
0 & 14 & -12 & 7
\end{array}\right) \\
& \underset{x}{u} \\
& y \\
& \omega
\end{aligned} \underset{z}{u} \cdot \vec{x}=\left(\begin{array}{l}
x \\
y \\
w \\
z
\end{array}\right), \vec{b}=\left(\begin{array}{l}
1 \\
3 \\
0
\end{array}\right)
$$

Let's look at $A \vec{x}=\vec{b}$:
answer is 3×1

This becomes

$$
\begin{aligned}
& \text { This becomes } \\
& \left.\binom{\left(\begin{array}{llll}
1 & 4 & -2 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
y \\
z
\end{array}\right)}{\left(\begin{array}{llll}
2 & 0 & 1 & 0
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
z \\
z
\end{array}\right)=\left(\begin{array}{l}
1 \\
3 \\
\left(\begin{array}{lll}
x \\
y \\
w \\
z
\end{array}\right)
\end{array}\right)}=\begin{array}{l}
14 \\
0
\end{array}\right)
\end{aligned}
$$

This becomes

$$
\begin{aligned}
& \text { This becomes } \\
& \left(\begin{array}{l}
x+4 y-2 w+z \\
2 x+0 y+w+0 z \\
0 x+14 y-12 w+7 z
\end{array}\right)=\left(\begin{array}{l}
1 \\
3 \\
0
\end{array}\right)
\end{aligned}
$$

This is the same as

$$
\begin{array}{r}
x+4 y-2 w+z=1 \\
2 x+w=3 \\
14 y-12 w+7 z=0
\end{array}
$$

Theorem: Let A be an $n \times n$ matrix.
Suppose A^{-1} exists.
Then for each vector \vec{b} in \mathbb{R}^{n} there exists exactly one
solution to the equation $A \vec{x}=\vec{b}$.
This solution is $\vec{x}=A^{-1} \vec{b}$.
proof: Suppose A^{-1} exists.
Then

$$
\begin{aligned}
& A\left(A^{-1} \vec{b}\right)=\left(A A^{-1}\right) \vec{b}=I_{n} \vec{b}=\vec{b} \\
& A \vec{x}=\vec{b}
\end{aligned}
$$

Thus, $\vec{x}=A^{-1} \vec{b}$ solves $A \vec{x}=\vec{b}$.
Why is that the only solution?
Suppose you had a solution
\vec{x}_{0} to $A \vec{x}=\vec{b}$.
So, $A \vec{x}_{0}=\vec{b}$
Multiply both sides by A^{-1} on the left to get

$$
A^{-1}\left(A x_{0}\right)=A^{-1} \vec{b}
$$

Thus,

$$
(\underbrace{A^{-1} A}_{I_{n}}) x_{0}=A^{-1} \vec{b}
$$

So,

$$
\frac{I_{n} x_{0}}{x_{0}}=A^{-1} \vec{b}
$$

Thus, $x_{0}=A^{-1} \vec{b}$.
So the only solution is $A^{-1} \vec{b}$.

Ex: Find all the solutions to

$$
\begin{align*}
3 x+3 z & =9 \tag{*}\\
x+y+2 z & =-4 \\
-2 x+3 y & =5
\end{align*}
$$

We can re-write this in matrix form.

Let

$$
\begin{aligned}
& \text { Let } \\
& A=\left(\begin{array}{ccc}
3 & 0 & 3 \\
1 & 1 & 2 \\
-2 & 3 & 0
\end{array}\right), \vec{x}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right), \vec{b}=\left(\begin{array}{c}
9 \\
-4 \\
5
\end{array}\right) \\
& (*) \text { becomes }
\end{aligned}
$$

The system (*) becomes

$$
A \vec{x}=\vec{b}
$$

On Monday we showed that

$$
\begin{aligned}
& A^{-1}=\left(\begin{array}{ccc}
2 & -3 & 1 \\
4 / 3 & -2 & 1 \\
-5 / 3 & 3 & -1
\end{array}\right)
\end{aligned}
$$

Since A^{-1} exists, the system
(*) will have exactly one solution and that solution will be

$$
\left.\begin{array}{rl}
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =\vec{x}=\underbrace{\vec{a}+A^{-1}}_{\underbrace{3 \times 3}_{\text {answer is }}} \vec{b} \\
& =\underbrace{\left(\begin{array}{ccc}
2 & -3 & 1 \\
4 / 3 & -2 & 1 \\
-5 / 3 & 3 & -1
\end{array}\right)}_{3 \times 1} \\
& =\left(\begin{array}{c}
9 \\
-4 \\
5
\end{array}\right) \\
\left(\begin{array}{ccc}
2 & -3 & 1
\end{array}\right) \cdot\binom{-4}{5} \\
\left(\begin{array}{ccc}
9 \\
-4 \\
5
\end{array}\right) \\
\left(\begin{array}{lll}
-5 / 3 & 3 & -1
\end{array}\right) \cdot\left(\begin{array}{c}
9 \\
-4 \\
5
\end{array}\right)
\end{array}\right)=
$$

$$
=\left(\begin{array}{c}
18+12+5 \\
12+8+5 \\
-15-12-5
\end{array}\right)=\left(\begin{array}{c}
35 \\
25 \\
-32
\end{array}\right)
$$

Thus,

$$
x=35, y=25, z=-32
$$

is the only solution to

$$
\begin{aligned}
3 x+3 z & =9 \\
x+y+2 z & =-4 \\
-2 x+3 y & =5
\end{aligned}
$$

